

IQ Switch[®]

ProxFusion[™] Series

IQS621 Datasheet

Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities

The IQS621 ProxFusion[™] IC is a multifunctional, ambient light sensing (ALS), capacitive, Hall-effect & inductive sensor designed for applications where any or all of the technologies may be required. The IQS621 is an ultra-low power solution designed for short or long term activations through any of the sensing channels. The IQS621 is fully I²C compatible.

Features

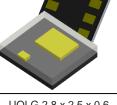
- Unique combination of sensing technologies:
 - Capacitive sensing 0
 - Ambient light sensing (ALS) 0
 - Hall-effect sensing
 - Inductive sensing 0
- **Capacitive sensing**
 - o 2pF to 200pF external capacitive load capability
 - Fully adjustable sensing options
- Ambient light sensing (ALS)
 - Absolute lux output
 - Human eye response compensated
 - 4-bit ALS range output (0 10)
 - Dual threshold detection for day/night \circ indication with hysteresis

Hall-effect sensing

- No external components required
- Dual direction Hall switch sensor
- 2 level detection (widely variable) 0
- Detection range 1mT 100mT

Inductive sensing

- Metal sensing UI with 2 level variable 0 detection and hysteresis
- Only external sense coil required (PCB \cap trace)


Applications

- Mobile electronics (phones/tablets)
- Home automation & lighting control
- White goods and appliances

- **Multiple** integrated **UI options** based on years of experience in sensing on fixed and mobile platforms:
 - Proximity / Touch 0
 - Proximity wake-up 0
- Representations only Automatic Tuning Implementation (ATI) – performance enhancement (10bit)
- Minimal external components
- Standard **I**²**C** interface (polling with sub 1ms clock stretching)
- Optional RDY indication for event mode operation
- Low power consumption: 300uA (50 Hz response, all technologies in use), 2.5uA (low power mode, zoom to scanning mode with wake-up)
- **Event or Streaming mode**
- Supply voltage: 1.8V to 3.3V
- Low profile UOLG 2.8 x 2.5 x 0.6 9-pin package
 - Wearable devices
 - Human Interface Devices
 - Aftermarket automotive¹

Available Packages						
T _A UOLG-2.8 x 2.5 x 0.6 – 9N						
-40°C to 85°C	IQS621					

¹ The part is not automotive qualified.

UOLG 2.8 x 2.5 x 0.6 9-pin

Table of Contents

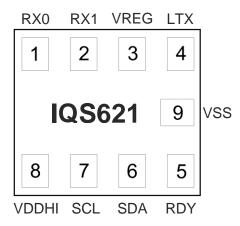
LI	ST OF A	BBREVIATIONS	4
1	INTF	ODUCTION	5
	1.1	ProxFusion™	5
	1.2	Packaging and Pin-Out	5
	1.3	REFERENCE SCHEMATIC	6
	1.4	SENSOR CHANNEL COMBINATIONS	7
2	CAP	ACITIVE SENSING	8
	2.1	INTRODUCTION TO PROXSENSE [®]	8
	2.2	CHANNEL SPECIFICATIONS	8
	2.3	HARDWARE CONFIGURATION	9
	2.4	SOFTWARE CONFIGURATION	
	2.5	SENSOR DATA OUTPUT AND FLAGS	10
3	IND	JCTIVE SENSING	11
	3.1	INTRODUCTION TO INDUCTIVE SENSING	
	3.2	CHANNEL SPECIFICATIONS	
	3.3	HARDWARE CONFIGURATION	
	3.4	SOFTWARE CONFIGURATION	
	3.5	SENSOR DATA OUTPUT AND FLAGS	-
4	AME	BIENT LIGHT SENSING (ALS)	
	4.1	INTRODUCTION TO AMBIENT LIGHT SENSING	
	4.2	CHANNEL SPECIFICATIONS	
	4.3	HARDWARE CONFIGURATION	
	4.4	SOFTWARE CONFIGURATION	
_	4.5	SENSOR DATA OUTPUT AND FLAGS	-
5		L-EFFECT SENSING	
	5.1	INTRODUCTION TO HALL-EFFECT SENSING	
	5.2	CHANNEL SPECIFICATIONS	
	5.3	HARDWARE CONFIGURATION	
	5.4	Software configuration	-
	5.5		-
6	TEM	PERATURE MONITORING	
	6.1	INTRODUCTION TO TEMPERATURE MONITORING	-
	6.2	CHANNEL SPECIFICATIONS	-
	6.3	HARDWARE CONFIGURATION	
	6.4 6.5	Software configuration	
7	DEV	ICE CLOCK, POWER MANAGEMENT AND MODE OPERATION	
	7.1	DEVICE MAIN OSCILLATOR	
	7.2	DEVICE MODES	
	7.3	REPORT RATES	
0	7.4	System reset	
8			
	8.1 ° 2	I ² C MODULE SPECIFICATION	
	8.2 8.3	DEVICE ADDRESS AND SUB-ADDRESSES	
	0.5	ADDITIONAL OT F OPTIONS	24

IQ Switch[®] ProxFusion[™] Series

8.4	RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM	
9 ME	MORY MAP	26
9.2	Device Information Data	
9.3	FLAGS AND USER INTERFACE DATA	
9.4	Channel counts (raw data)	
9.5	LTA VALUES (FILTERED DATA)	
9.6	ProxFusion sensor settings block 1	
9.7	ProxFusion UI settings	
9.8	METAL DETECT UI SETTINGS	
9.9	ALS SENSOR SETTINGS	
9.10	ALS UI SETTINGS	
9.11	HALL-EFFECT SENSOR SETTINGS	
9.12	HALL-EFFECT SWITCH UI SETTINGS	
9.13	TEMPERATURE MONITORING UI SETTINGS	
9.14	DEVICE AND POWER MODE SETTINGS	
10 ELE	CTRICAL CHARACTERISTICS	56
10.1	Absolute Maximum Specifications	
10.2	Power On-reset/Brown out	
10.3	DIGITAL INPUT/OUTPUT TRIGGER LEVELS	
10.4	CURRENT CONSUMPTIONS	
10.5	ALS SPECIFICATIONS	
10.6	CAPACITIVE LOADING LIMITS	
10.7	HALL-EFFECT MEASUREMENT LIMITS	
10.8	INDUCTIVE MEASUREMENT LIMITS	
10.9	TEMPERATURE MEASUREMENT LIMITS	
11 PAC	CKAGE INFORMATION	61
11.1	UOLG-2.8 x 2.5 x 0.6 – 9-PIN PACKAGE AND FOOTPRINT SPECIFICATIONS	61
11.2	DEVICE MARKING AND ORDERING INFORMATION	
11.3	TAPE AND REEL SPECIFICATION	
11.4	MSL LEVEL	
12 DA	TASHEET REVISIONS	65
12.1	REVISION HISTORY	
12.2	Errata	
APPENDI	IX A. CONTACT INFORMATION	66

List of abbreviations

- ATI Automatic Tuning Implementation
- LTA Long term average
- ALS Ambient Light Sensing
- UI User interface
- AC Alternating current
- DSP Digital signal processing
- RX Receiving electrode
- LTX Transmitting electrode
- CS Sampling capacitor
- NP Normal power
- LP Low power
- ULP Ultra low power
- ACK I²C Acknowledge condition
- NACK I²C Not Acknowledge condition



Introduction

1.1 ProxFusion™

The ProxFusion[™] sensor series provide all of the proven ProxSense® engine capabilities with additional sensors types. A combined sensor solution is available within a single platform.

1.2 Packaging and Pin-Out

Figure 1.1 IQS621 pin-out (UOLG-2.8 x 2.5 x 0.6 – 9-pin package; device markings may differ)

Table 1.1 Pin-out description	Pin-out description	Table 1.1
-------------------------------	---------------------	-----------

	IQS621 in UOLG-2.8 x 2.5 x 0.6 – 9-pin										
Pin	Name	Туре	Function								
1	RX0	Receiving electrode	Connect to conductive area intended for sensor receiving								
2	RX1	Receiving electrode	Connect to conductive area intended for sensor receiving								
3	VREG	Regulator output	Requires external capacitor								
4	LTX	Transmitter electrode	Connect to conductive area intended for sensor transmitting								
5	RDY	Digital Input / Output	RDY (I ² C Ready interrupt signal)								
6	SDA	Digital Input / Output	SDA (I ² C Data signal)								
7	SCL	Digital Input / Output	SCL (I ² C Clock signal)								
8	VDDHI	Supply Input	Supply: 1.8V – 3.3V								
9	VSS	Signal GND	Common ground reference								

IQ Switch[®] **ProxFusion[™] Series**

1.3 Reference schematic

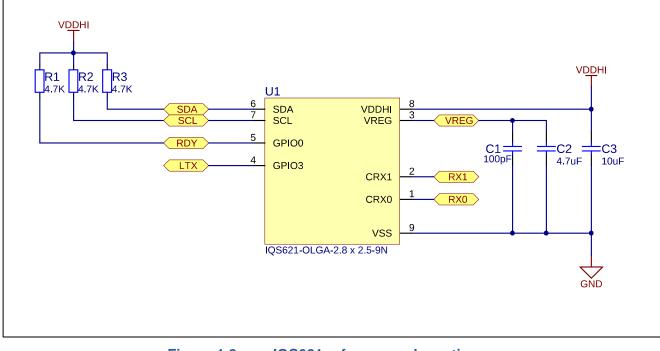


Figure 1.2 **IQS621** reference schematic

Sensor channel combinations 1.4

The table below summarizes the IQS621's sensor and channel associations.

Table 1.2 Sensor - channel allocation

	Sensor / UI type	CH0	CH1	CH2	CH3	CH4	CH5	CH6
Capacitive	Self capacitive	0	0					
Inductive	Mutual inductive		٠					
ALS	Ambient light sensing				•	٠		
Hall-effect	Hall-effect switch UI						• Positive	Negative
Temperature	Temperature trip and output			•				

Key:

O - Optional implementation

Fixed use for UI

Capacitive sensing

2.1 Introduction to ProxSense[®]

Building on the previous successes from the ProxSense® range of capacitive sensors, the same fundamental sensor engine have been implemented in the ProxFusion™ series.

The capacitive sensing capabilities of the IQS621 include:

- Self capacitive sensing. •
- Maximum of 2 capacitive channels to be individually configured.
 - Prox and touch adjustable thresholds
 - Individual sensitivity setups 0
 - Alternative ATI modes 0
- Discreet button UI:
 - Fully configurable 2 level threshold setup Traditional Prox & Touch activation levels.
 - Customizable filter halt time

2.2 Channel specifications

The IQS621 provides a maximum of 2 channels available to be configured for capacitive sensing. Each channel can be setup separately according to the channel's associated settings registers.

There are two distinct capacitive user interfaces available to be used.

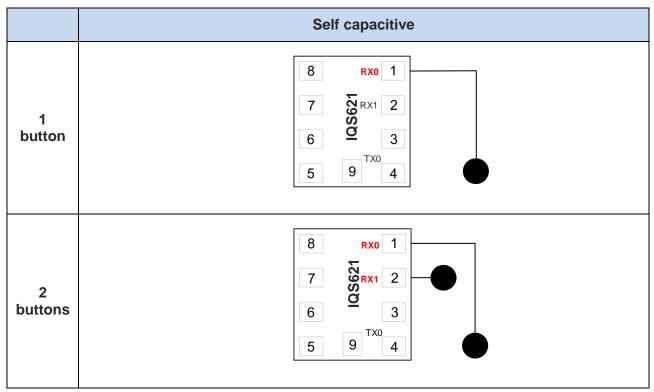
a) Discreet proximity/touch UI (always enabled)

Table 2.1	Capacitive s	sensing -	- channel	allocation
Table 2.1	Capacitive	sensing -	· cnannei	allocation

Sensor/UI type	CH0	CH1	CH2	CH3	CH4	CH5	CH6
Self capacitive	0	0					

Key:

- Optional implementation
- Fixed use for UI



2.3 Hardware configuration

In the table below are multiple options of configuring sensing (Rx) and transmitting (Tx) electrodes to realize different implementations (combinations not shown).

Table 2.2 Capacitive sensing hardware description

2.4 Software configuration

To be completed.

2.5 Sensor data output and flags

The following registers should be monitored by the master to detect capacitive sensor activations:

a) The Global events register (0x11) will show the IQS621's main events. Bit0 is dedicated to the ProxSense activations.

	Global events (0x11)												
Bit Number	7	6	5	4	3	2	1	0					
Data Access	-	R	R	R	R	R	R	R					
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT					

b) The ProxSense UI flags (0x12) provide more detail regarding the capacitive sensor outputs. An individual prox and touch output bit for channel 0 and 1 is provided in the ProxFusion UI flags register.

	ProxSense UI flags (0x12)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	R	R	-	-	R	R				
Name	-	-	CH1_T	CH0_T	-	-	CH1_P	CH0_P				

3 Inductive sensing

3.1 Introduction to inductive sensing

The IQS621 provides inductive sensing capabilities in order to detect the presence of metal/metaltype objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are definable for each.

3.2 Channel specifications

The IQS621 requires 3 sensing lines for mutual inductive sensing. Channel 1 is dedicated to the mutual inductive UI.

There are two distinct inductive user interfaces available to be used.

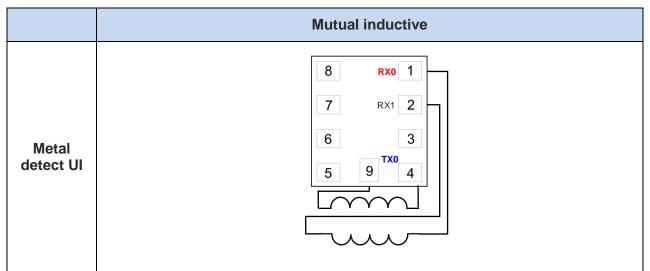
- a) Discreet proximity/touch UI (always enabled)
- b) Metal detect UI

Table 3.1 Mutual inductive sensor – channel allocation

Mode	CH0	CH1	CH2	СНЗ	CH4	CH5
Mutual inductive		٠				

Key:

- - Optional implementation
- Fixed use for UI



3.3 Hardware configuration

Rudimentary hardware configurations (to be completed).

3.4 Software configuration

To be completed.

3.5 Sensor data output and flags

The following registers can be monitored by the master to detect inductive sensor related events.

a) Global events (0x11) to prompt for inductive sensor activation. Bit3 denoted as **METAL_DETECT_EVENT** will indicate the detection of a metal object using the inductive sensing.

	Global events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R	R	R	R	R	R	R				
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT				

b) The Metal detect UI flags (0x13) register provides the classic prox/touch two level activation outputs as well as a signed output bit to distinguish between whether the counts have risen or fallen below the LTA (direction of counts).

	Metal detect UI flags (0x13)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	-	-	R	R	R				
Name	-	-	-	-	-	Signed output	TOUCH	PROX				

c) Metal detect UI output (0x14 - 0x15) registers will provide a combined 16-bit value to acquire the magnitude of the inductive sensed object.

		Me	etal detect	UI output	(0x14 - 0x′	15)					
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		Metal detect UI output low byte									
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R	R	R	R	R	R	R			
Name		Metal detect UI output high byte									

Ambient light sensing (ALS)

4.1 Introduction to ambient light sensing

The IQS621 employs two light sensitive semi-conductor areas on chip to realise an ambient light sensor. The sensor capabilities includes:

- Human eye response compensated •
- 4-bit ALS range output (0 10) •
- Dual threshold detection for day/night indication with hysteresis •
 - 8-bit individual definable light and dark trigger thresholds 0
 - Dark threshold range: 0 1020 Lux in steps of 4 Lux. 0
 - Light threshold range: 0 4080 Lux in steps of 16 Lux.

4.2 Channel specifications

The IQS621 provides 2 dedicated channels to ALS conversions.

Table 4.1 Ambient light sensing - channel allocation

Sensor/UI type	CH0	CH1	CH2	CH3	CH4	CH5	CH6
ALS				•	٠		

Key:

Fixed use for UI

Please note:

- CS size, multipliers and charge frequency are adjustable. •
- Counts on these channels are limited to 8000 counts.
- Ch3 ALS channel 1:
 - Assigned to Wide spectrum ALS.
- Ch4 ALS channel 2:
 - Assigned to narrow spectrum ALS.

4.3 Hardware configuration

To be completed.

4.4 Software configuration

To be completed.

4.5 Sensor data output and flags

The following registers can be monitored by the master to detect ALS related events.

a) The ALS EVENT (bit 2) in the Global events (0x11) register are dedicated to ALS related events. This bit will toggle when either one of the three Hall flags is set and is automatically cleared after reading the registers.

	Global events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R	R	R	R	R	R	R				
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT				

b) The ALS UI flags (0x16) register provides a 4 bit ALS Range value to indicate the current ALS reading (ALS range value bit 0-3). An additional LIGHT/DARK bit (bit 7) is used to indicate the ALS sensor status measured against the two configurable light/dark threshold values in registers 0x80 and 0x81. The user can thus setup his own triggering thresholds for light and dark perceived readings and also incorporate a hysteresis using this UI.

	ALS UI flags (0x16)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	-	-	-	R	R	R	R				
Name	LIGHT / DARK		Reserved			ALS ran	ge value					

c) The ALS UI output (0x17 - 0x18) registers provide a 16 bit value of the ALS amplitude in units of Lux as obtained by the current sensor measurement.

		Α	LS UI out	put (0x17 ·	- 0x18)						
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R	R	R	R	R	R	R	R			
Name		ALS UI output low byte									
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R R R R R R R R									
Name		ALS UI output high byte									

Hall-effect sensing

5.1 Introduction to Hall-effect sensing

The IQS621 has two internal Hall-effect sensing plates (on chip). No external sensing hardware is required for Hall-effect sensing.

The Hall-effect measurement is essentially a current measurement of the induced current through the Hall-effect-sensor plates produced by the magnetic field passing perpendicular through each plate.

Advanced digital signal processing are performed to provide sensible output data.

- Two threshold levels are provided (proximity & touch). •
- Hall-effect output is linearized by inverting signals. •
- North/South field direction indication provided. •
- **Differential Hall-effect sensing:** •
 - Removes common mode disturbances 0
 - North-South field indication 0

5.2 Channel specifications

Channels 5 and 6 are dedicated to Hall-effect sensing. Channel 5 performs the positive direction measurements and channel 6 will handle all measurements in the negative direction. These two channels are used in conjunction to acquire differential Hall-effect data and will always be used as input data to the Hall-effect UI's.

There is a dedicated Hall-effect user interface:

a) Hall-effect switch UI

Table 5.1 Hall-effect sensor – channel allocation

Sensor/UI type	CH0	CH1	CH2	CH3	CH4	CH5	CH6
Hall-effect switch Ul						• Positive	• Negative

Key:

- Optional implementation
- Fixed use for UI



5.3 Hardware configuration

Rudimentary hardware configurations.

Copyright © Azoteq 2016 All Rights Reserved

IQS621 Preliminary pre-production datasheet revision 0.91 Information in this datasheet is based on products in the design, validation or qualification phase of November 2016 development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice.

Page 17 of 66

5.4 Software configuration

To be completed.

5.5 Sensor data output and flags

The following registers can be monitored by the master to detect Hall-effect related events.

d) The HALL_EVENT (bit 1) in the Global events (0x11) register are dedicated to Hall-effect related events. This bit will toggle when either one of the three Hall flags is set and is automatically cleared after reading the registers.

	Global events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R	R	R	R	R	R	R				
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT				

e) The Hall UI flags (0x19) register provides the standard two level activation output (prox and touch) as well as a HALL_N/S bit to indicate the magnet polarity orientation.

	Hall-effect UI flags (0x19)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	-	-	R	R	R				
Name	-	-	-	-	-	HALL TOUT	HALL POUT	HALL N/S				

The Hall UI output (0x1A - 0x1B) registers provide a 16 bit value of the Hall-effect amplitude f) detected by the sensor.

		H	all-effect L	JI output (0)x1A - 0x1l	В)				
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Hall-effect UI output low byte								
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R R R R R R R R								
Name			Hall-	effect UI o	utput high	byte				

Temperature monitoring

6.1 Introduction to temperature monitoring

The IQS621 has an internal temperature monitor to validate IC operating temperature:

- 16-bit Kelvin output
- Temperature change indicator •
- Can be used as a temperature change indicator to monitor internal IC temperature and aid in the reliability of other sensor measurements.

The IQS621 uses a linearly proportional to absolute temperature sensor for temperature monitoring. The temperature output is given by,

$$T = \frac{a}{b. CH_2} + c$$

Where a, b and c are constants that are calculated during IC manufacturing. Additionally, the channel setup must be calibrated during testing.

6.2 Channel specifications

To be completed.

Table 6.1

Temperature monitoring – channel allocation

Sensor / UI type	CH0	CH1	CH2	СНЗ	CH4	CH5	CH6
Temperature trip and output			•				

Key:

Optional implementation

Fixed use for UI

6.3 Hardware configuration

No hardware configuration is required for temperature monitoring. Only the basic external IC components as implemented in the reference schematic.

A linearly proportional to absolute temperature (PTAT) current is measured by the internal shared sensor engine. The number of counts will lower as temperature increases.

6.4 Software configuration

To be completed.

6.5 Sensor data output and flags

The following registers can be monitored by the master to detect temperature sensor related events.

a) Global events (0x11) to prompt for temperature sensor activation. Bit4 denoted as TEMP_EVENT will indicate the detection of a temperature threshold trigger using the temperature sensing.

	Global events (0x11)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	R	R	R	R	R	R	R			
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT			

b) The Temperature UI flags (0x1C) register provides a single bit for temperature trip indication.

	Temperature UI flags (0x1C)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name	Temp Trip				Reserved					

c) The Temperature UI output (0x1D - 0x1E) registers will provide a combined 16-bit value to acquire the magnitude of the temperature sensed.

	Temperature UI Output (0x1D - 0x1E)									
Bit Number	7	7 6 5 4 3 2 1 0								
Data Access	R	R	R	R	R	R	R	R		
Name			Temp	erature UI	output lov	v byte				
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R	R	R	R	R	R	R		
Name		Temperature UI output high byte								

7 Device clock, power management and mode operation

7.1 Device main oscillator

The IQS621 has a **16MHz** main oscillator (default enabled) to clock all system functionality.

An option exists to reduce the main oscillator to 8MHz. This will result in all system timings, charge transfers and sample rates to be slower by half of the default implementations.

To set this option this:

- As a software setting Set the System_settings: bit4 = 1, via an I^2C command.
- As a permanent setting Set the OTP option in FG Bank 0: bit2 = 1, using Azoteq USBProg program.

7.2 Device modes

The IQS621 supports the following modes of operation;

- Normal mode (Fixed report rate)
- Low power mode (Reduced report rate, no UI execution)
- **Ultra-low power mode** (Only channel 0 is sensed for a prox)
- Halt mode (Suspended/disabled) Note: Auto modes must be disabled to enter or exit halt mode.

The device will automatically switch between the different operating modes by default. However this Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings 0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits (Power_mode_settings 0xD2: bit4-3) can then be used to specify the desired mode of operation.

7.2.1 Normal mode

Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal Mode report Rate (0xD3) register. This 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms.

Note: The device's low power oscillator have an accuracy as specified in section 9.

7.2.2 Low power mode

Low power mode is a reduced sensing mode where all channels are sensed but no UI code are executed. The sample rate can be specified in the Low Power Mode report Rate (0xD4) register. The 8-bit value is adjustable from 0ms - 255ms in intervals of 1ms. Reduced report rates also reduce the current consumed by the sensor.

Note: The device's low power oscillator have an accuracy as specified in section 9.

7.2.3 Ultra-low power mode

Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no other channels or UI code are executed. Set the EN_ULP_MDE bit (Power_mode_settings: bit6) to enable use of the ultra-low power mode. The sample rate can be specified in the Low Power Mode report Rate (0xD5) register. The 8-bit value is adjustable from 0ms – 4sec in intervals of 16ms.

Wake up will occur on prox detection on channel 0.

7.2.4 Halt mode

Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device requires an I²C command from a master to explicitly change the power mode out of the halt state before any sensor functionality can continue.

7.2.5 Mode time

The mode time is specified in the Auto mode timer (0xD6) register. The 8-bit value is adjustable from 0ms – 2 min in intervals of 500ms.

7.3 Report rates

7.3.1 Calculation of each mode's report rate

NP_Segment rate

To be completed.

Auto modes change rates

To be completed.

Streaming/event mode rates

To be completed.

7.4 System reset

The IQS621 device monitor's system resets and events.

- a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7) and the master should explicitly clear this bit by writing it active to acknowledge a valid reset.
- b) The system events will also be indicated with the Global events register's SYS EVENT bit (Global events 0x11: bit4) if any system event occur such as a reset. This event will continuously trigger until the reset has been acknowledged.

Communication

8.1 I²C module specification

The device supports a standard two wire I²C interface with the addition of an RDY (ready interrupt) line. The communications interface of the IQS620 supports the following:

- Streaming data as well as event mode.
- The master may address the device at any time. If the IQS620 is not in a communication • window, the device will return an ACK after which clock stretching may be induced until a communication window is entered. Additional communication checks are included in the main loop in order to reduce the average clock stretching time.
- The provided interrupt line (RDY) is open-drain active low implementation and indicates a • communication window.

8.2 Device address and sub-addresses

The default device address is **0x44 = DEFAULT ADDR**.

Alternative sub-address options are definable in the following one-time programmable bits: OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7

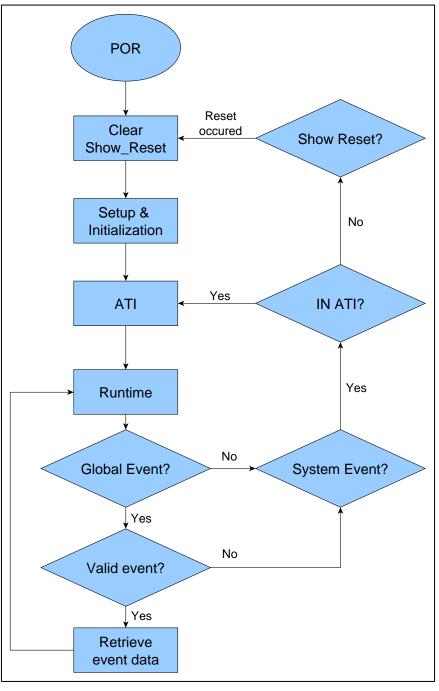
a)	Default address:	0x44 = DEFAULT_ADDR OR SUB_ADDR_0
b)	Sub-address:	0x45 = DEFAULT_ADDR OR SUB_ADDR_1
C)	Sub-address:	0x46 = DEFAULT_ADDR OR SUB_ADDR_2
d)	Sub-address:	0x47 = DEFAULT_ADDR OR SUB_ADDR_3
e)	Sub-address:	0x4C = DEFAULT_ADDR OR SUB_ADDR_4
f)	Sub-address:	0x4D = DEFAULT_ADDR OR SUB_ADDR_5
g)	Sub-address:	0x4E = DEFAULT_ADDR OR SUB_ADDR_6
h)	Sub-address:	0x4F = DEFAULT_ADDR OR SUB_ADDR_7

8.3 Additional OTP options

All one-time-programmable device options are located in OTP bank 0.

OTP Bank0								
Bit Number	7	6	5	4	3	2	1	0
Name	-	COMMS ATI	-	ALS INC DELAY	SUB ADR 2	8MHz	SUB A	DR 0_1

Bit definitions:


- Bit 6: Communication during ATI •
 - 0: No streaming events are generated during ATI
 - 1: Communication continues as setup regardless of ATI state. 0
- Bit4: ALS increment delay •
 - 0: No delay increment
 - 1: Increment delay enabled 0
- Bit 2: Main Clock frequency selection
 - 0: Run FOSC at 16MHz
 - 1: Run FOSC at 8MHz \cap
- Bit 3.1.0: I2C sub-address
 - I2C address = 0x44 OR SUB ADDR

8.4 Recommended communication and runtime flow diagram

The following is a basic master program flow diagram to communicate and handle the device. It addresses possible device events such as output events, ATI and system events (resets).

Figure 8.1 Master command structure and runtime event handling flow diagram

It is recommended that the master verifies the status of the System_Flags0 bits to identify events and resets. Detecting either one of these should prompt the master to the next steps of handling the IQS621.

Streaming mode communication is used for detail sensor evaluation during prototyping and/or development phases.

Event mode communication is recommended for runtime use of the IQS621. This reduce the communication on the I²C bus and report only triggered events.

Memory map 9

The full memory map is summarized below. Register groups are explained in the latter subsections.

Table 9.1	IQS621	Memory	map	index
-----------	--------	--------	-----	-------

Full Address	Group Name	Item Name	Data Access
0x00		Product number	Read-Only
0x01	Device information data	Software number	Read-Only
0x02		Hardware number	Read-Only
0x10		System flags	Read-Only
0x11		Global events	Read-Only
0x12		ProxSense UI flags	Read-Only
0x13		Metal detect UI flags	Read-Only
0x14		Metal detect UI output 0	Read-Only
0x15		Metal detect UI output 1	Read-Only
0x16		ALS flags	Read-Only
0x17	Flags and user interface data	ALS output low	Read-Only
0x18		ALS output high	Read-Only
0x19		Hall-effect UI flags	Read-Only
0x1A		Hall-effect UI output 0	Read-Only
0x1B		Hall-effect UI output 1	Read-Only
0x1C		Temperature UI flags	Read-Only
0x1D		Temperature output low	Read-Only
0x1E		Temperature output high	Read-Only
0x20		Channel 0 counts low	Read-Only
0x21		Channel 0 counts high	Read-Only
0x22		Channel 1 counts low	Read-Only
0x23		Channel 1 counts high	Read-Only
0x24		Channel 2 counts low	Read-Only
0x25		Channel 2 counts high	Read-Only
0x26	Channel counts (raw data)	Channel 3 counts low	Read-Only
0x27	Charmer courts (raw data)	Channel 3 counts high	Read-Only
0x28		Channel 4 counts low	Read-Only
0x29		Channel 4 counts high	Read-Only
0x2A		Channel 5 counts low	Read-Only
0x2B		Channel 5 counts high	Read-Only
0x2C		Channel 6 counts low	Read-Only
0x2D		Channel 6 counts high	Read-Only
0x30		Channel 0 LTA low	Read-Only
0x31	LTA values (filtered data)	<u>Channel 0 LTA high</u>	Read-Only
0x32		Channel 1 LTA low	Read-Only
0x33		<u>Channel 2 LTA high</u>	Read-Only
0x40		ProxFusion settings 0_0	Read-Write
0x41		ProxFusion settings 0 1	Read-Write
0x42		ProxFusion settings 1_0	Read-Write
0x43		ProxFusion settings 1 1	Read-Write
0x44		ProxFusion settings 2 0	Read-Write
0x45		ProxFusion settings 2_1	Read-Write
0x46	ProxFusion sensor settings	ProxFusion settings 3_0	Read-Write
0x47	<u></u> _	ProxFusion settings 3_1	Read-Write
0x48		ProxFusion settings 4	Read-Write
0x49		ProxFusion settings 5	Read-Write
0x4A		Compensation Ch0	Read-Write
0x4B		Compensation Ch1	Read-Write
0x4C		Multipliers Ch0	Read-Write
0x4D		Multipliers Ch1	Read-Write

Copyright © Azoteq 2016 All Rights Reserved

IQS621 Preliminary pre-production datasheet revision 0.91

Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice.

IQ Switch[®]

ProxFusion [™]	Series
--------------------------------	--------

0x50		Prox threshold Ch0	Read-Write
0x51		Touch threshold Ch0	Read-Write
0x52	ProxSense UI settings	Prox threshold Ch1	Read-Write
0x53	<u>·····································</u>	Touch threshold Ch1	Read-Write
0x54		ProxSense UI halt time	Read-Write
0x60		Metal detect UI settings	Read-Write
0x61		Metal detect UI filter halt threshold	Read-Write
0x62	Metal detect UI settings	Metal detect UI prox threshold	Read-Write
0x63		Metal Detect UI touch threshold	Read-Write
0x70		ALS settings 0	Read-Write
0x71		ALS settings 1	Read-Write
0x72	ALS sensor settings	ALS filter speed	Read-Write
0x73		Multipliers Ch3 Ch4	Read-Write
0x80		ALS dark threshold	Read-Write
0x81	AL S LU pottingo	ALS light threshold	Read-Write
0x82	ALS UI settings	ALS to Lux divider	Read-Write
0x83		ALS IR divider	Read-Write
0x90		Hall-effect settings 0	Read-Write
0x91	Hall sensor settings	Hall-effect settings 1	Read-Write
0x92	Than sensor settings	Compensation Ch4 and Ch5	Read-Write
0x93		Multipliers Ch4 and Ch5	Read-Write
0xA0		Hall-effect switch UI settings	Read-Write
0xA1	Hall switch UI settings	Hall-effect switch UI prox threshold	Read-Write
0xA2		Hall-effect switch UI touch threshold	Read-Write
0xC0		Temperature UI settings	Read-Write
0xC1	Temperature UI settings	Multipliers Ch2	Read-Write
0xC2	<u>remperature or settings</u>	Temperature calibration 0	Read-Write
0xC3		Temperature calibration 1	Read-Write
0xD0		System settings	Read-Write
0xD1		Active channels	Read-Write
0xD2		Power mode settings	Read-Write
0xD3	Device and power mode	Normal power mode report rate	Read-Write
0xD4	<u>settings</u>	Low power mode report rate	Read-Write
0xD5		Ultra-low power mode report rate	Read-Write
0xD6		Auto mode time	Read-Write
0xD7		Global event mask	Read-Write

9.2 Device Information Data

9.2.1 Product number

	Product number (0x00)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name			[Device proc	luct numbe	r				

Bit definitions:

• Bit 7-0: Device product number = D'70'

9.2.2 Software number

	Software number (0x01)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name			C	evice softw	vare numbe	er				

Bit definitions:

• Bit 7-0: Device software number = D'05'

9.2.3 Hardware number

	Hardware number (0x02)									
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Device hardware number								

Bit definitions:

• Bit 7-0: Device hardware number = D'130'

9.3 Flags and user interface data

9.3.1 System flags

	System flags (0x10)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	-	-	R	R	R	R	R				
Name	SHOW RESET	-	-	POWER MODE		IN ATI	EVENT	NP SEG ACTIVE				

Bit definitions:

- Bit 7: Reset indicator •
 - 0: No reset event
 - 1: A device reset has occurred and needs to be acknowledged. 0
- Bit 4-3: Current power-mode indicator
 - 00: Normal mode
 - 01: Low power mode
 - 10: Ultra-low power mode
 - 11: Halt Mode 0
- Bit 2: ATI busy indicator
 - 0: No channels are in ATI
 - 0 1: One or more channels are in ATI
- Bit 1: Global event indicator
 - 0: No new event to service
 - 0 1: An event has occurred and should be serviced
- Bit 0: Normal power segment indicator •
 - 0: Not performing a normal power update
 - 1: Busy performing a normal power update 0

9.3.2 Global events

	Global events (0x11)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R	R	R	R	R	R	R				
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT				

Bit definitions:

- Bit 6: Power mode event flag •
 - 0: No event to report
 - 1: A power mode event has occurred and should be handled 0
- Bit 5: System event flag •
 - 0: No event to report
 - 1: A System event has occurred and should be handled
- Bit 4: Temperature event flag
 - o 0: No event to report

- 1: A Temperature event has occurred and should be handled 0
- Bit 3: Metal detect event flag •
 - 0: No event to report
 - 1: A Metal detect event has occurred and should be handled 0
- Bit 2: ALS event flag
 - o 0: No event to report
 - 1: An ALS event has occurred and should be handled 0
- Bit 1: Hall-effect event flag
 - 0: No event to report
 - 1: A Hall-effect event has occurred and should be handled 0
- Bit 0: ProxSense event flag
 - 0: No event to report
 - 1: A capacitive key event has occurred and should be handled 0

9.3.3 ProxSense UI flags

	ProxSense UI flags (0x12)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	R	R	-	-	R	R				
Name	-	-	CH1_T	CH0_T	-	-	CH1_P	CH0_P				

Bit definitions:

- Bit 5: Ch1 touch indicator .
 - 0: Delta below touch level
 - 1: Delta above touch level 0
- Bit 4: Ch0 touch indicator
 - 0: Delta below touch level
 - 1: Delta above touch level \cap
- Bit 1: Ch1 proximity indicator .
 - 0: Delta below proximity level
 - 1: Delta above proximity level 0
- Bit 0: Ch0 proximity indicator
 - o 0: Delta below proximity level
 - 1: Delta above proximity level. 0

9.3.4 Metal detect UI flags

	Metal detect UI flags (0x13)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	-	-	R	R	R				
Name	-	-	-	-	-	Signed output	TOUCH	PROX				

Bit definitions:

- Bit 2: Delta direction signed output •
 - 0: Counts rise above the LTA 0
 - 1: Counts fall below the LTA 0

- Bit 1: Metal detect touch indicator
 - 0: Field strength below touch level 0
 - 1: Field strength above touch level 0
 - Bit 0: Metal detect proximity indicator
 - o 0: Delta below proximity level
 - 1: Delta above proximity level 0

9.3.5 Metal detect UI output

	Metal detect UI output (0x14/0x15)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R	R	R	R	R	R	R				
Name		Metal detect UI output low byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R R										
Name	Metal detect UI output high byte											

Bit definitions:

Bit 15-0: Metal Detect UI output value •

9.3.6 ALS UI flags

	ALS UI flags (0x16)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	-	-	-	R	R	R	R			
Name	LIGHT / DARK		Reserved			ALS Rar	nge Value				

Bit definitions:

•

- Bit 7: Light/Dark •
 - 0: Light indication
 - 1: Dark indication
 - Bit 3-0: ALS Range value
 - o 0-10 range value of ALS measurement

9.3.7 ALS UI output

	ALS UI output (0x17/0x18)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name			A	LS UI Outp	out Low Byt	е					
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R	R	R	R	R	R	R			

Copyright © Azoteq 2016 All Rights Reserved

IQS621 Preliminary pre-production datasheet revision 0.91

Page 31 of 66

Information in this datasheet is based on products in the design, validation or qualification phase of November 2016 development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice.

IQ Switch[®]

ProxFusion[™] Series

Name

ALS UI Output High Byte

Bit definitions:

Bit 15-0: ALS UI output •

9.3.8 Hall-effect UI flags

	Hall-effect UI flags (0x19)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	-	-	-	R	R	R				
Name	-	-	-	-	-	TOUCH	PROX	HALL N/S				

Bit definitions:

- Bit 2: Hall-effect touch indicator .
 - 0: Field strength below touch level
 - 1: Field strength above touch level 0
- Bit 1: Hall-effect proximity indicator .
 - 0: Field strength below proximity level
 - 1: Field strength above proximity level 0
- Bit 0: Hall-effect North South Field indication .
 - o 0: North field present
 - 1: South field present 0

9.3.9 Hall-effect UI output

	Hall-effect UI output (0x1A/0x1B)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R	R	R	R	R	R	R				
Name		Hall-effect UI output low byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R R										
Name	Hall-effect UI output high byte											

Bit definitions:

Bit 15-0: Hall-effect UI output •

9.3.10 Temperature UI flags

	Temperature UI flags (0x1C)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	-	-	-	-	-	-	-			
Name	TEMP TRIP	-	-	-	-	-	-	-			

Bit definitions:

Page 32 of 66

- Bit 7: Temperature trip indicator
 - 0 0: Temperature below trip level
 - 1: Temperature above trip level 0

9.3.11 Temperature output

	Temperature output (0x1D/0x1E)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R	R	R	R	R	R	R	R				
Name		Temperature output low byte										
Bit Number	15	14	13	12	11	10	9	8				
Data Access	R	R R R R R R R										
Name		Temperature output high byte										

Bit definitions:

• Bit 15-0: Temperature output

9.4 Channel counts (raw data)

	С	hannel co	unts Ch0/1	/2/3/4/5/6 (0x20/0x21	-0x2C/0x2[D)			
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Channel data low byte								
Bit Number	15	14	13	12	11	10	9	8		
Data Access	R	R R R R R R R								
Name	Channel data high byte									

Bit definitions:

Bit 15-0: AC filter or raw count value •

9.5 LTA values (filtered data)

	LTA Ch0/1 (0x30/0x31-0x32/0x33)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name		LTA low byte									
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R	R	R	R	R	R	R			
Name		LTA high byte									

Bit definitions:

. Bit 15-0: LTA filter value

9.6 ProxFusion sensor settings block 1

9.6.1 ProxFusion settings 0

9.6.1.1 Capacitive sensing

	ProxFusion settings 0_0/1 (0x40-0x41)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	-	-	R/W	R/W	R/W	R/W			
Name	Capacitive sensor mode		Internal use	Internal use	TX SELECT		RX SELECT				
Fixed value	0	0	0	0	0	0					

Bit definitions:

- Bit 6-7: Sensor mode •
 - 00: Capacitive sensing mode
- Bit 3-2: TX Select •
 - o 00: TX 0 and TX 1 is disabled
- Bit 0-1: RX select
 - 00: RX 0 and RX 1 is disabled
 - o 01: RX 0 is enabled
 - 10: RX 1 is enabled 0
 - 11: RX 0 and RX 1 is enabled 0

9.6.1.2 Inductive sensing

ProxFusion settings 0_1 (0x41)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W		
Name	Inductive sensor mode		Internal use	Multiplier range	TX SELECT		RX SELECT			
Fixed value	1	0	0		0	0	1	1		

Bit definitions:

- Bit 7-6: Sensor mode •
 - 10: Inductive sensor mode
- Bit 4: Multiplier range .
 - o 0: Small
 - o 1: Large
- Bit 3-2: TX Select •
 - 00: TX 0 and TX 1 is disabled
- Bit 1-0: RX Select •
 - 11: RX 0 and RX 1 is enabled

9.6.2 ProxFusion settings 1

9.6.2.1 Capacitive sensing

ProxFusion settings 1_0/1 (0x42-0x43)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	R/W	R/W	R/W	-	-	R/W	R/W			
Name	-	CSz	CHARG	E FREQ	Internal use		AUTO ATI MODE				

Bit definitions:

- Bit 6: CS size •
 - 0: Prox storage capacitor size is 15 pF
 - 1: Prox storage capacitor size is 60 pF
- Bit 5-4: Charge frequency divider
 - o 00: 1/2
 - o 01: 1/4
 - 10: 1/8 0
 - o 11: 1/16
- Bit 1-0: Auto ATI Mode
 - o 00: ATI disabled
 - o 01: Partial ATI (all multipliers are fixed)
 - 10: Semi-partial ATI (coarse multipliers are fixed) 0
 - 11: Full-ATI 0

9.6.2.2 Inductive sensing

ProxFusion settings 1_1 (0x43)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	CSz	CHARG	E FREQ	PROJ BIAS		AUTO ATI MODE				

Bit definitions:

- Bit 6: CS size •
 - 0: Prox storage capacitor size is 15pF
 - 1: Prox storage capacitor size is 60pF
- Bit 5-4: Charge frequency divider
 - o 00: 1/2
 - o 01: 1/4
 - 10: 1/8 0
 - o 11: 1/16
- Bit 3-2: Projected bias / Internal resistor (all modes except prox)
 - 00: 2.5μA / 88kΩ
 - 01: 5µA / 66kΩ
 - 10: 10μA / 44kΩ 0
 - 11: 20μA / 22kΩ 0
- Bit 1-0: Auto ATI Mode
 - o 00: ATI disabled

- 01: Partial ATI (all multipliers are fixed)
- 10: Semi-Partial ATI (coarse multipliers are fixed) 0
- 11: Full-ATI 0

9.6.3 ProxFusion settings 2

9.6.3.1 Capacitive sensing

0

	ProxFusion settings 2_0/1 (0x44 - 0x45)										
Bit Number											
Data Access											
Name	ATI BASE ATI TARGET (x32)										

Bit definitions:

- Bit 7-6: Auto ATI base value .
 - o **00:75**
 - 01:100 0
 - 10: 150 0
 - 11:200 0
- Bit 5-0: Auto ATI Target
 - ATI Target is 6-bit value x 32

9.6.3.2 Inductive sensing

	ProxFusion settings 2_1 (0x45)										
Bit Number											
Data Access											
Name	ATI BASE ATI TARGET (x32)										

Bit definitions:

- Bit 7-6: Auto ATI base value •
 - o **00:75**
 - 01:100 0
 - 10: 150 0
 - 11: 200 0
- Bit 5-0: Auto ATI Target •
 - o ATI Target is 6-bit value x 32

9.6.4 ProxFusion settings 3

9.6.4.1 Capacitive sensing

	ProxFusion settings 3_0/1 (0x46-0x47)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	-	R/W	R/W	R/W	-				
Name		NGTH ECT	CS DIV	Internal use	UP LENGTH EN	PASS L	ENGTH	-				

IQS621 Preliminary pre-production datasheet revision 0.91

Page 37 of 66

Copyright © Azoteq 2016 All Rights Reserved

Bit definitions:

- Bit 7-6: Up Length Select (requires UP_LENGTH_EN = 1 for use) •
 - \circ 00: Up length = 0010
 - 01: Up length = 0110
 - 10: Up length = 10100
 - 11: Up length = 11100
- Bit 5: CS divider
 - 0: Normal CS cap size
 - 1: CS cap size 3 times smaller 0
- Bit 3: Up length select enable
 - 0: Up length select is disabled
 - 1: Up length select is enabled (value in bit 7-6 is used) 0
- Bit 2-1: Pass length select
 - \circ 00: Pass length = 001
 - \circ 01: Pass length = 011
 - 10: Pass length = 1010
 - 11: Pass length = 1110

9.6.4.2 Inductive sensing

	ProxFusion settings 3_1 (0x47)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	-	R/W	R/W	R/W	-				
Name	UP LENGTH SELECT		CS DIV	Internal use	UP LENGTH EN	PASS L	ENGTH	-				

- Bit 7-6: Up length select (requires UP_LENGTH_EN = 1 for use) •
 - \circ 00: Up length = 0010
 - \circ 01: Up length = 0110
 - 10: Up length = 10100
 - 11: Up length = 1110 \cap
- Bit 5: CS divider
 - 0: Normal CS cap size
 - 1: CS cap size 3 times smaller 0
- Bit 3: Up length select enable
 - 0: Up length select is disabled
 - 1: Up length select is enabled (value in bit 7-6 is used) 0
- Bit 2-1: Pass length select
 - \circ 00: Pass length = 001
 - \circ 01: Pass length = 011
 - 10: Pass length = 1010
 - 11: Pass length = 1110

9.6.5 ProxFusion settings 4

9.6.5.1 Capacitive sensing

	ProxFusion settings 4 (0x48)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W				
Name	-	Internal use	TWO SIDED EN	ACF DISABLE	LTA I	BETA	ACF B	ETA				

Bit definitions:

- Bit 5: Two sided detection
 - o 0: Bidirectional detection disabled
 - o 1: Bidirectional detection enabled
- Bit 4: Disable AC Filter •
 - 0: AC filter enabled
 - o 1: AC filter disabled
- Bit 3-2: Long term average beta value
 - o 00:7
 - o 01:8
 - 10: 9 0
 - 11: 10 0
- Bit 1-0: AC filter beta value
 - o 00:1
 - 01: 2 0
 - 10: 3 0
 - 11:4 0

9.6.5.2 Inductive sensing

	ProxFusion settings 4 (0x48)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	-	METAL DETECT EN	TWO SIDED EN	ACF DISABLE	LTA E	BETA	ACF B	ETA				

Bit definitions:

- Bit 0-1: AC filter beta value •
 - o 00:1
 - o 01:2
 - o 10:3
 - o 11:4
- Bit 2-3: Long term average beta value •
 - o 00:7
 - 01:8 0
 - 10:9 0

IQS621 Preliminary pre-production datasheet revision 0.91

- 11:10 0
- Bit 4: Disable AC filter •
 - o 0: AC filter enabled
 - 1: AC filter disabled 0
- Bit 5: Two sided detection
 - 0: Bidirectional detection disabled
 - 1: Bidirectional detection enabled 0
- Bit 6: Metal detection UI enable
 - 0: Metal detection UI is disabled
 - 1: Metal detection UI is enabled 0

9.6.6 ProxFusion settings 5

	ProxFusion settings 5 (0x49)									
Bit Number	7 6 5 4 3 2 1 0									
Data Access	-	-	-	-	-	-	-	-		
Name		Internal use								

Bit definitions:

Bit 7-0: Internal use

9.6.7 Compensation

	Compensation Ch0/1/2/3 (0x4A - 0x4B)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Compensation (0-7)										

Bit definitions:

- Bit 7-0: Compensation (7-0) •
 - o 0-255: Lower 8-bits of the Compensation value.

9.6.8 Multipliers

	Multipliers Ch0/1/2/3 (0x4C-0x4D)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Compens	ation (8-9)	Multiplie	er coarse		Multipl	lier fine				

- Bit 7-6: Compensation (8-9) •
 - 0-3: Upper 2-bits of the Compensation value.
- Bit 5-4: Multiplier coarse
 - o 0-3: Coarse multiplier selection
- Bit 3-0: Multiplier fine
 - 0-15: Fine multiplier selection

9.7 ProxFusion UI settings

9.7.1 Prox threshold Ch0/1

	Prox Threshold Ch0/1 (0x50/0x52)										
Bit Number	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Proximity threshold value									

Bit definitions:

• Bit 7-0: Proximity threshold = Proximity threshold value

9.7.2 Touch threshold Ch0/1

	Touch Threshold Ch0/1 (0x51/0x53)										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Touch threshold value										

Bit definitions:

• Bit 7-0: Touch threshold = Touch threshold value * LTA/ 256

9.7.3 ProxFusion discrete UI halt time

	ProxFusion discrete UI halt time (0x54)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Halt time										

Bit definitions:

• Bit 7-0: Halt time in 500ms increments (decimal value x 500ms)

9.8 Metal detect UI settings

9.8.1 Metal detect UI settings

	Metal detect UI settings (0x60)										
Bit Number 7 6 5 4 3 2 1 0											
Data Access	-	-	R/W	R/W	-	-	R/W	R/W			
Name	-	-	Hyster	esis_T	-	-	Hyster	esis_P			

Bit definitions:

- Bit 5-4: Touch hysteresis •
 - o 00: Disabled
 - 01: 1/4 of threshold 0
 - 10: 1/8 of threshold 0
 - 11: 1/16 of threshold 0
- Bit 1-0: Proximity hysteresis .
 - o 00: Disabled
 - o 01: 1/4 of threshold
 - 10: 1/8 of threshold 0
 - 11: 1/16 of threshold 0

9.8.2 Metal detect UI filter halt threshold

	Metal detect UI filter halt threshold (0x61)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Metal detect filter halt threshold value										

Bit definitions:

Bit 7-0: Filter halt threshold = Metal detect filter halt threshold value •

9.8.3 Metal detect UI proximity threshold

	Metal detect UI proximity threshold (0x62)										
Bit Number 7 6 5 4 3 2 1 0											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	Proximity threshold value										

Bit definitions:

• Bit 7-0: Proximity threshold = Proximity threshold value

9.8.4 Metal detect UI touch threshold

Metal detect UI touch threshold (0x63)									
Bit Number	7	6	5	4	3	2	1	0	

Ą		IQ Switch [®] ProxFusion [™] Serie				Q	4 <i>zo</i>	teq	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name		Touch threshold value							

Bit definitions:

Bit 7-0: Touch threshold = Touch threshold value * 4 •

9.9 ALS sensor settings

9.9.1 ALS settings 0

	ALS settings 0 (0x70)											
Bit Number	r 7 6 5 4 3 2 1 0											
Data Access	-	-	R/W	R/W	R/W	R/W	-	-				
Name	-	Internal use	CHARGE FREQ		INC DELAY	CS	-	-				

Bit definitions:

- Bit 5-4: Charge frequency divider •
 - o 00: 1/2
 - o 01: 1/4
 - o 10: 1/8
 - 11: 1/16 0
- Bit 3: Inc Delay •
 - o 0: Pre-charge delay is at default
 - 1: Increase pre-charge delay to improve low light performance 0
- Bit 2: CS divider size
 - 0: CS divider size default
 - 0 1: CS divider size increased

9.9.2 ALS settings 1

	ALS settings 1 (0x71)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W R/W R/W R/W R/W									
Name		MULTIPLIER CALIBRATION									

Bit definitions:

- Bit 7-2: ATI target for ALS Ch4 = ATI target x 32 ٠
- Bit 1-0: Multiplier calibration •
 - o 0-3: Multiplier calibration size for ALS sensor calibration

9.9.3 ALS settings filter speed

	ALS settings filter speed (0x72)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name		ALS settings filter speed									

Bit definitions:

Bit 7-0: ALS settings filter speed •

- o 0: Both filter stages are disabled
- 1: Only the IIR filter is enabled 0

2-255: Windowed minima filter (with window length of 2-255) as well as the IIR is 0 enabled

9.9.4 Multipliers Ch3/4

	Multipliers Ch3/4 (0x75)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name		-	-	IPLIER \RSE		MULIPLI	ER FINE				

- Bit 5-4: Multiplier coarse •
 - o 0-3: Coarse multiplier selection
- Bit 3-0: Multiplier fine •
 - 0-15: Fine multiplier selection

9.10 ALS UI settings

9.10.1 ALS dark threshold

	ALS dark threshold (0x80)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	ALS dark threshold x4 (Lux)										

Bit definitions:

• Bit 7-0: Dark threshold = Dark threshold value x4

9.10.2 ALS light threshold

	ALS light threshold (0x81)										
Bit Number 7 6 5 4 3 2 1 0											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name		ALS Light Threshold x16 (Lux)									

Bit definitions:

Bit 7-0: Dark Threshold = Dark Threshold value x16

9.10.3 ALS raw to Lux divider

	ALS raw to Lux divider (0x82)										
Bit Number											
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W									
Name	ALS raw to Lux divider										

Bit definitions:

Bit 7-0: ALS raw to Lux divider = ALS raw to Lux divider value (The default value is loaded • from FGB2, 0 disables divider)

9.10.4 ALS IR compensation

	ALS IR compensation (0x83)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		ALS IR compensation divider									

Bit definitions:

Bit 0-7: ALS IR compensation divider = ALS IR compensation divider value (The default • value is loaded from FGB3 lower nibble, 0 disables divider)

9.11 Hall-effect sensor settings

9.11.1 Hall-effect settings 0

	Hall-effect settings 0 (0x90)										
Bit Number											
Data Access	-	-	R/W	R/W	-	-	R/W	R/W			
Name	-	-	CHARGE FREQ		rese	rved	AUTO AT	LI MODE			

Bit definitions:

- Bit 0-1: Auto ATI Mode
 - o 00: ATI disabled
 - 01: Partial ATI (all multipliers are fixed)
 - 10: Semi-Partial ATI (only coarse multipliers are fixed) 0
 - 11: Full-ATI 0
- Bit 4-5: Charge frequency divider .
 - o 00: 1/2
 - o 01: 1/4
 - 10: 1/8 0
 - 11: 1/16 0

9.11.2 Hall-effect settings 1

	Hall-effect settings 1 (0x91)										
Bit Number	Number 7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	ATI_I	BASE	ATI_TARGET (x32)								

Bit definitions:

.

- Bit 0-5: Auto ATI Target •
 - ATI Target is 6-bit value x 32
 - Bit 6-7: Auto ATI base value
 - o **00:75**
 - o **01: 100**
 - 10: 150 0
 - 11:200 0

9.11.3 Compensation Ch4/5

	Compensation Ch5/6 (0x92)										
Bit Number	Number 7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Compensation (7-0)									

Bit definitions:

Bit 7-0: Compensation (7-0) •

7-0: Lower 8-bits of the Compensation value.

9.11.4 Multipliers Ch4/5

0

	Multipliers Ch5/6 (0x93)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compensation (9-8)		Multiplie	rs coarse		Multipli	ers fine				

- Bit 7-6: Compensation (9-8) •
 - 0-3: Upper 2-bits of the Compensation value.
- Bit 5-4: Multipliers coarse •
 - o 0-3: Coarse multiplier selection
- Bit 3-0: Multipliers fine •
 - o 0-15: Fine multiplier selection

9.12 Hall-effect switch UI settings

9.12.1 Hall-effect UI settings

	Hall-effect UI settings (0xA0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	R/W	R/W	R/W	-	R/W	R/W	R/W			
Name		Lin Mode	Hysteresis T		-	Swap Direction	Hyste	resis P			

Bit definitions:

- Bit 6: Linearize output •
 - o 0: Disabled
 - o 1: Enabled
- Bit 4-5: Touch hysteresis •
 - o 00: Disabled
 - \circ 01: 1/4 of threshold
 - 10: 1/8 of threshold
 - o 11: 1/16 of threshold
- Bit 2: Swap field direction indication
 - 0: Disabled
 - 1: Enabled
- Bit 0-1: Proximity hysteresis
 - o 00: Disabled
 - \circ 01: 1/4 of threshold
 - 10: 1/8 of threshold 0
 - 11: 1/16 of threshold 0

9.12.2 Hall-effect UI proximity threshold

	Hall-effect UI proximity threshold (0xA1)										
Bit Number	ber 7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Proximity threshold value									

Bit definitions:

Bit 0-7: Proximity Threshold = Proximity Threshold Value •

9.12.3 Hall-effect UI touch threshold

	Hall-effect UI touch threshold (0xA2)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Touch threshold value									

Bit 0-7: Touch Threshold = Touch Threshold Value * 4

9.13 Temperature monitoring UI settings

9.13.1 Temperature UI settings

		Т	emperature	Ul setting	gs (0xC0)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name	reserved	RESEED IN PROX	RESEED EN	RESEED THRESHOLD				

Bit definitions:

- Bit 6: Allow temperature reseed while in proximity
 - 0: Reseed in prox disabled
 - 1: Reseed in prox enabled
- Bit 5: Temperature reseed enable
 - 0: Reseed is disabled
 - 1: Reseed is enabled
- Bit 4-0: Temperature reseed threshold = Temperature reseed threshold value

9.13.2 Multiplier channel 2

	Multiplier Ch2 (0xC1)										
Bit Number	Number 7 6 5 4 3 2 1 0										
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name		Multiplier Ch2									

Bit definitions:

Bit 7-0: Multiplier channel 2 •

9.13.3 Temperature calibration 0

	Temperature calibration 0 (0xC2)										
Bit Number											
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Name Temperature multiplier					Temperatu	ure divider				

Bit definitions:

- Bit 7-4: Temperature multiplier = Temperature multiplier value •
- Bit 3-0: Temperature divider = Temperature divider value •

9.13.4 Temperature calibration 1

	Temperature calibration 1 (0xC3)										
Bit Number	7	6	5	4	3	2	1	0			

<u>С</u>		IQ Switch [®] ProxFusion [™] Series				Q	Azo	teq	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name		Temperature offset							

Bit definitions:

Bit 7-0: Temperature offset = Temperature offset value •

9.14 Device and power mode settings

9.14.1 System settings

	System settings (0xD0)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	W=1	W=1	R/W	R/W	R/W	R/W	W=1	W=1				
Name	SOFT RESET	ACK RESET	EVENT MODE	8MHz	COMMS ATI	ATI BAND	REDO ATI	RESEED				

Bit definitions:

.

- Bit 7: Software Reset (Set only, will clear when done) •
 - 1: Causes the device to perform a WDT reset
- Bit 6: ACK Reset (Set only, will clear when done) •
 - o 1: Acknowledge that a reset has occurred. This event will trigger until acknowledged.
 - Bit 5: Event mode enable
 - 0: Event mode disabled. Default streaming mode communication.
 - 1: Event mode communication enabled.
- Bit 4: Main Clock frequency selection
 - 0: Run FOSC at 16MHz
 - 1: Run FOSC at 8MHz
- Bit 3: Communications during ATI
 - 0: No communications are generated during ATI
 - 1: Communication continue as setup regardless of ATI state.
- Bit 2: Re-ATI Band selection
 - 0: Re-ATI when outside 1/8 of ATI target
 - 1: Re-ATI when outside 1/16 of ATI target
 - Bit 1: Redo ATI on all channels (Set only, will clear when done)
 - 1: Redo the ATI on all channels
- Bit 0: Reseed all Long-term filters (Set only, will clear when done)
 - o 1: Reseed all channels

9.14.2 Active channels

			Active	channels	(0xD1)					
Bit Number	7 6 5 4 3 2 1 0									
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W		
Name	-	-	Ch5	Ch4	Ch3	Ch2	Ch1	Ch0		

- Bit 6: Ch6 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be • functional)
 - 0: Channel is disabled
 - 1: Channel is enabled 0
- Bit 5: Ch5 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be functional)

- o 0: Channel is disabled
- \circ 1: Channel is enabled
- Bit 4: Ch4 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)
 - \circ $\,$ 0: Channel is disabled
 - 1: Channel is enabled
- Bit 3: Ch3 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)
 - 0: Channel is disabled
 - 1: Channel is enabled
- Bit 2: Ch2
 - o 0: Channel is disabled
 - o 1: Channel is enabled
- Bit 1: Ch1
 - 0: Channel is disabled
 - o 1: Channel is enabled
- Bit 0: Ch0
 - 0: Channel is disabled
 - o 1: Channel is enabled

9.14.3 Power mode settings

	Power mode settings (0xD2)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	NP SEG ALL	EN ULP MODE	DSBL AUTO MODE	POWER MODE NP SEG RAT		E						

- Bit 7: Normal Power Segment bounds check
 - o 0: NP-segment check on PRX channels only
 - 1: NP-segment check on all channels
- Bit 6: : Allow auto ultra-low power mode switching
 - o 0: ULP is disabled during auto-mode switching
 - 1: U LP is enabled during auto-mode switching
- Bit 5: Disable auto mode switching
 - 0: Auto mode switching is enabled
 - 1: Auto mode switching is disabled
- Bit 4-3: Manually select power mode (note: bit 5 must be set)
 - 00: Normal Power mode. The device runs at the normal power rate, all enabled channels and UIs will execute.
 - 01: Low Power mode. The device runs at the low power rate, all enabled channels and UIs will execute.
 - 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run as wake-up channel. The other channels execute at the NP-segment rate.
 - 11: Halt Mode. No conversions are performed; the device must be removed from this mode using an I2C command.

- Bit 2-0: Normal power segment update rate
 - 000: ½ ULP rate
 - o 001: ¼ ULP rate
 - o 010: 1/8 ULP rate
 - o 011: 1/16 ULP rate
 - 100: 1/32 ULP rate 0
 - 101: 1/64 ULP rate \cap
 - o 110: 1/128 ULP rate
 - 111: 1/256 ULP rate 0

9.14.4 Normal power mode report rate

	Normal power mode report rate (0xD3)											
Bit	7	7 6 5 4 3 2 1 0										
Number												
Data	R/W	R/W R/W R/W R/W R/W R/W R/W										
Access												
Name		Normal power mode report rate in ms										

Bit definitions:

Bit 7-0: Normal mode report rate in ms (note: LPOSC timer has +- 4 ms accuracy) •

9.14.5 Low power mode report rate

	Low power mode report rate (0xD4)											
Bit	7	7 6 5 4 3 2 1 0										
Number												
Data	R/W	R/W R/W R/W R/W R/W R/W R/W										
Access												
Name			Low p	Low power mode report rate in ms								

Bit definitions:

Bit 7-0: Low-power mode report rate in ms (note: LPOSC timer has +- 4 ms accuracy) •

9.14.6 Ultra-low power mode report rate

	Ultra-low power mode report rate (0xD5)											
Bit Number	7	7 6 5 4 3 2 1 0										
Data Access	R/W	R/W R/W R/W R/W R/W R/W R/W										
Name		Ultra	-low power	mode repo	ort rate in 16	3 ms incren	nents					

Bit definitions:

Bit 7-0: Ultra-low power mode report rate in 16 ms increments (decimal value x 16ms) •

9.14.7 Auto mode timer

	Auto mode timer (0xD6)											
Bit Number												
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				

Copyright © Azoteq 2016 All Rights Reserved

IQ Switch[®] **ProxFusion[™] Series**

Name

Auto mode timer in 500 ms increments

Bit definitions:

Bit 7-0: Auto modes switching time in 500 ms increments (decimal value x 500ms) •

9.14.8 Global event mask

			Global	event mas	k (0xD7)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name	-	POWER MODE EVENT	SYS EVENT	TEMP EVENT	METAL DETECT EVENT	ALS EVENT	HALL EVENT	PROX SENSE EVENT

Bit definitions:

- Bit 6: Power mode event mask
 - 0: Event is allowed
 - 1: Event is masked 0
- Bit 5: System event mask •
 - 0: Event is allowed
 - 0 1: Event is masked
- Bit 4: Temperature event mask •
 - 0: Event is allowed
 - 1: Event is masked 0
- Bit 3: Metal detect UI event mask
 - 0: Event is allowed
 - 1: Event is masked 0
 - Bit 2: ALS UI event mask
 - 0: Event is allowed
 - 0 1: Event is masked
- Bit 1: Hall-effect UI event mask
 - 0: Event is allowed
 - 1: Event is masked 0
- Bit 0: ProxSense UI event mask
 - 0: Event is allowed
 - 1: Event is masked 0

10 Electrical characteristics

10.1 Absolute Maximum Specifications

The following absolute maximum parameters are specified for the device:

Exceeding these maximum specifications may cause damage to the device.

Parameter	Absolute maximum
Operating temperature	-40°C to 85°C
Supply Voltage (VDDHI – GND)	3.6V
Maximum pin voltage	VDDHI + 0.5V (may not exceed VDDHI max)
Maximum continuous current (for specific pins)	10mA
Minimum pin voltage	GND - 0.5V
Minimum power-on slope	100V/s
ESD protection	±4kV (Human body model)

10.2 Power On-reset/Brown out

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Power On Reset	V _{DDHI} Slope ≥ 100V/s @25°C	POR	TBC	TBC	V
Brown Out Detect	V _{DDHI} Slope ≥ 100V/s @25°C	BOD	TBC	TBC	V

10.3 Digital input/output trigger levels

DESCRIPTION	Conditions	PARAMETER	MIN	TYPICAL	MAX	UNIT
All digital inputs	VDD = 1.8V	Input low level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 1.8V	Input high level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 3.3V	Input low level voltage	TBC	TBC	TBC	V
All digital inputs	VDD = 3.3V	Input high level voltage	TBC	TBC	TBC	V

10.4Current consumptions

10.4.1 ALS sensing alone

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
NP mode	VDD = 3.3V	76Hz	TBC	111	TBC	uA
NP mode	VDD = 3.3V	50 Hz	TBC	33	TBC	uA
LP mode	VDD = 1.8V	10Hz	TBC	19	TBC	uA
LP mode	VDD = 3.3V		TBC	TBC	TBC	mA
ULP mode	VDD = 1.8V		TBC	TBC	TBC	mA
ULP mode	VDD = 3.3V		TBC	TBC	TBC	mA
Halt mode	VDD = 1.8V		TBC	TBC	TBC	mA
Halt mode	VDD = 3.3V		TBC	TBC	TBC	mA

10.4.2 Capacitive sensing alone

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
NP mode	VDD = 1.8V		TBC	TBC	TBC	mA
NP mode	VDD = 3.3V		TBC	TBC	TBC	mA
LP mode	VDD = 1.8V		TBC	TBC	TBC	mA
LP mode	VDD = 3.3V		TBC	TBC	TBC	mA
ULP mode	VDD = 1.8V		TBC	TBC	TBC	mA
ULP mode	VDD = 3.3V		TBC	TBC	TBC	mA
Halt mode	VDD = 1.8V		TBC	TBC	TBC	mA
Halt mode	VDD = 3.3V		TBC	TBC	TBC	mA

10.4.3 Hall-effect sensing alone

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
NP mode	VDD = 1.8V		TBC	TBC	TBC	mA
NP mode	VDD = 3.3V		TBC	TBC	TBC	mA
LP mode	VDD = 1.8V		TBC	TBC	TBC	mA
LP mode	VDD = 3.3V		TBC	TBC	TBC	mA
ULP mode	VDD = 1.8V		TBC	TBC	TBC	mA
ULP mode	VDD = 3.3V		TBC	TBC	TBC	mA
Halt mode	VDD = 1.8V		TBC	TBC	TBC	mA
Halt mode	VDD = 3.3V		TBC	TBC	TBC	mA

10.4.4 Inductive sensing alone

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
NP mode	VDD = 1.8V		TBC	TBC	TBC	mA
NP mode	VDD = 3.3V		TBC	TBC	TBC	mA
LP mode	VDD = 1.8V		TBC	TBC	TBC	mA
LP mode	VDD = 3.3V		TBC	TBC	TBC	mA
ULP mode	VDD = 1.8V		TBC	TBC	TBC	mA

IQS621 Preliminary pre-production datasheet revision 0.91

Page 57 of 66

IQ Switch[®]

ProxFusion [™]	Series
--------------------------------	--------

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
ULP mode	VDD = 3.3V		TBC	TBC	TBC	mA
Halt mode	VDD = 1.8V		TBC	TBC	TBC	mA
Halt mode	VDD = 3.3V		TBC	TBC	TBC	mA

10.4.5 Temperature monitoring alone

Power mode	Conditions	Report rate	MIN	TYPICAL	MAX	UNIT
NP mode	VDD = 1.8V		TBC	TBC	TBC	mA
NP mode	VDD = 3.3V		TBC	TBC	TBC	mA
LP mode	VDD = 1.8V		TBC	TBC	TBC	mA
LP mode	VDD = 3.3V		TBC	TBC	TBC	mA
ULP mode	VDD = 1.8V		TBC	TBC	TBC	mA
ULP mode	VDD = 3.3V		TBC	TBC	TBC	mA
Halt mode	VDD = 1.8V		TBC	TBC	TBC	mA
Halt mode	VDD = 3.3V		TBC	TBC	TBC	mA

10.5 ALS specifications

10.5.1 Human eye response Lux calculation

The spectral response of the human eye does not match that of typical silicone based light sensors. The human eye perceives a peak response in the "green" colour band centred at around 550nm. However silicone based sensors has a maximum response to ambient light typically in the infrared band. To translate the sensor measurement to correlate with the human eye's natural perceived ambient light sensitivity a dynamic mathematical function is applied.

The follow parameter values are defined for explanatory purposes:

- $a \rightarrow ALS$ multiplier:
 - A dynamic multiplier value calculated as in the table below for the specific ALS setup and current ALS value output.
- $b \rightarrow ALS (raw)$ to Lux divider:
 - 8-bit value loaded from OTP Bank 2 into register 0x82. This calibration value is determined during IC calibration.
- $c \rightarrow ALS IR$ compensation divider:
 - 4-bit value loaded from OTP Bank 2 into register 0x83. This calibration value is determined during IC calibration and can be increased to an 8-bit value if calibration requires a higher value but this will need to be written manually to the register.

The IQS621's ALS multiplier (parameter a) is calculated as specified in the following table.

		Inputs			Output
ALS value (0x16: bit3-0)	Coarse multiplier (0x75: bit5-4)	Fine multiplier (0x75: bit3-0)	Charge frequency divider (0x70: bit5-4)	CS size (0x70: bit2)	ALS multiplier a
0	0	MULTIPLIER_CALIBRATION	3	0	1
1	0	MULTIPLIER_CALIBRATION	2	0	2
2	0	MULTIPLIER_CALIBRATION	1	0	4
3	0	MULTIPLIER_CALIBRATION	0	0	8
4	0	MULTIPLIER_CALIBRATION	1	1	16
5	0	MULTIPLIER_CALIBRATION	0	1	32
6	0	(MULTIPLIER_CALIBRATION +1)*2-1	0	1	64
7	0	(MULTIPLIER_CALIBRATION +1)*4-1	0	1	128
8	1	(MULTIPLIER_CALIBRATION +1)*4-1	0	1	384
9	2	(MULTIPLIER_CALIBRATION +1)*4-1	0	1	1152
10	3	(MULTIPLIER_CALIBRATION +1)*4-1	0	1	3456

Table 10.1ALS multiplier calculation

All the calculations performed on chip are simplified for fixed-point arithmetic. The ALS Lux output is calculated by the following equation:

$$ALS \cong \frac{a}{b} \left(\frac{2^{19}}{CH_4} - \frac{2^{19}}{c.CH_3} \right)$$

ALS in units of Lux (as perceived by a human eye) is calculated using the measurement of channels 3 (ALS-component) & 4 (IR-component) as well as the three compensation parameter a, b & c as defined above.

The output of this function is a 16-bit integer available in the ALS UI output register (0x17-0x18).

10.6 Capacitive loading limits

To be completed.

10.7 Hall-effect measurement limits

To be completed.

10.8 Inductive measurement limits

To be completed.

10.9 Temperature measurement limits

To be completed.

11 Package information

11.1 UOLG-2.8 x 2.5 x 0.6 – 9-pin package and footprint specifications

Table 11.1 UOLG-2.8 x 2.5 x 0.6 - 9-pin package dimensions (bottom)

Dimension	[mm]
A	2.500
В	2.800
С	0.400
D	0.500
E	0.430
F	0.330
G	0.115
Н	0.120

Table 11.2 UOLG-2.8 x 2.5 x 0.6 - 9-pin package dimensions (side)

Dimension	[mm]
I	0.600
J	2.800
K	0.370
L	0.230
М	1.560
N	0.620
0	0.400
Р	0.145

Table 11.3 UOLG-2.8 x 2.5 x 0.6 – 9-pin landing pad dimensions

Dimension	[mm]
Q	0.500
R	0.400
S	0.730
Т	0.880
U	1.250
V	1.400

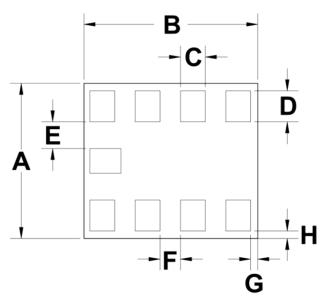


Figure 11.1 OLGA-2.8 x 2.5 x 0.6-9N Package dimensions (bottom view).

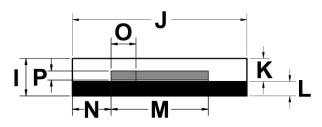
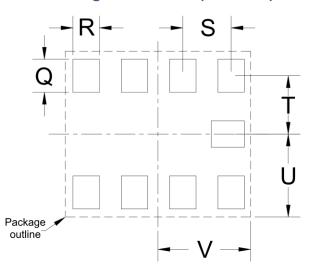



Figure 11.2 OLGA-2.8 x 2.5 x 0.6-9N Package dimensions (side view)

Figure 11.3 OLGA-2.8 x 2.5 x 0.6-9N Landing pad dimensions (viewed from top)

11.2 Device marking and ordering information

To be completed once in production.

11.3 Tape and reel specification

To be completed once in production.

11.4MSL Level

Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some semiconductors. The MSL is an electronic standard for the period in which a moisture sensitive device can be exposed to ambient room conditions (approximately 30°C / 85% RH see J-STD033C for more info) before reflow occur.

Package Level (duration)		Level (duration)
	UOLG-2.8 x 2.5 x0.6 -9N	MSL 1 (Unlimited at ≤30°C / 85% RH)
		Reflow profile peak temperature < 260°C for < 30 seconds

12 Datasheet revisions

12.1 Revision history

Revision 1.0 – First release version

12.2 Errata

IQ Switch[®] **ProxFusion[™] Series**

Appendix A. Contact information

	USA	Asia	South Africa
Physical Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	109 Main Street Paarl 7646 South Africa
Postal Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	PO Box 3534 Paarl 7620 South Africa
Tel	+1 512 538 1995	+86 755 8303 5294 ext 808	+27 21 863 0033
Fax	+1 512 672 8442		+27 21 863 1512
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

Please visit www.azoteq.com for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US 7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP 2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA 2015/023634

IQ Switch[®], SwipeSwitch[™], ProxSense[®], LightSense[™], AirButton[™], ProxFusion[™], Crystal Driver[™] and the

logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Values in the datasheet is subject to change without notice, please ensure to always use the latest version of this document. Application specific operating conditions should be taken into account during design and verlified before mass production. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title warranties and conductors with regard to these products and mioritration, including but not infinited to an implied warranties and conductors of merchantability, increase products and mornantion, including but not infinited to an implied warranties and conductors of merchantability, increase of a particular purpose, the and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices. or systems. No licenses to patential are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to <u>www.azoteq.com</u>

info@azoteq.com

IQS621 Preliminary pre-production datasheet revision 0.91 Information in this datasheet is based on products in the design, validation or qualification phase of November 2016 development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice